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Introduction:  (Multi)Collinearity 

In moving from SLR and MLR models, you face the possibility of having multiple explanatory 
variables.  As it turns out, how those variables move together (or not) ends up mattering in MLR 
analysis… a lot.  We call that moving together multicollinearity, or collinearity, for short.1 

Multicollinearity can impact a number of aspects of MLR analysis: 

• Omitted Variable Bias/Impact (Endogeneity):  It plays a role in driving omitted variable 
impact/bias (endogeneity) … recall the previous discussion. 

• SRF interpretation of MLR coefficients:  It can wreak havoc with the ceteris paribus 
interpretation of MLR coefficients...  Does it really make sense (when interpreting 
coefficients) to hold other things constant when things are moving together closely? 

• Standard Errors:  It impacts estimated standard errors and the precision with which 
parameters have been estimated.  Greater collinearity leads to higher standard errors (and 
smaller t-stats) and less precision in estimation.2 

• Wacky results… But don’t toss the baby!  And perhaps most 
insidiously, it can lead to wacky estimated coefficients, which 
in turn could very well lead the researcher astray… to focus on 
less important explanatory factors.  You may be tempted to 
throw out all of the babies…  and be left with no babies or bath 
water. 

• Explanatory power:  Less collinear potential explanatory variable candidates plausibly 
offer more independent explanatory power to the RHS, which could make them more 
attractive candidates for inclusion in a MLR analysis... so long, of course as they are also 
correlated with the dependent variable. 

                                                 
1 Some like to distinguish between the two terms….  I don’t. 
2 The topic of standard errors (and precision of estimation) is not covered here… but will come later with the 
discussion of statistical inference. 
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The Collinearity Regressions 

Consider a simple box office revenue forecasting MLR model in which total gross revenue, 
rtotgross, is regressed on weekly revenues in weeks #1 and #2. 

The two collinearity regressions associated with this MLR model are the SLR regressions in 
which each of the RHS variables has been separately regressed on the other/remaining RHS 
variable.   

Here's a summary of the results from the full MLR model (Model (1)), and the two associated 
collinearity regressions (Models (2) and (3)): 

 
 
------------------------------------------------------------ 
                MLR Model         Collinearity Regressions 
                      (1)             (2)             (3)    
                rtotgross             wk1             wk2    
------------------------------------------------------------ 
wk1               -0.0120                           0.522*** 
                  (-0.46)                        (249.91)    
 
wk2                 4.536***        1.673***                 
                  (95.87)        (249.91)                    
 
_cons               0.401          -0.178           0.889*** 
                   (1.74)         (-1.95)         (17.75)    
------------------------------------------------------------ 
N                    9114            9114            9114    
R-sq                0.887           0.873           0.873    
------------------------------------------------------------ 
t statistics in parentheses 
* p<0.05, ** p<0.01, *** p<0.001 
 

 
 
Multicollinearity with two RHS Variables:  Correlation and R-squared 

1.  Correlation 
If there are just two RHS variables in the MLR model, then an obvious measure of collinearity 
would be the correlation of the two variables, which captures the extent to which the two 
variables are moving together in a linear fashion.   

Here's the correlation between the two RHS variables in Model (1) above: 
 
. corr wk1 wk2 
(obs=9,114) 
 
             |      wk1      wk2 
-------------+------------------ 
         wk1 |   1.0000 
         wk2 |   0.9342   1.0000 
 

Not surprisingly, wk1 and wk2 revenues are highly correlated (0.9342). 

  



OLS/MLR Analytics II:  Collinearity & Co. 
 

3 
 

2.  Coefficient of Determination - 2R  

Alternatively, since we know that 2R  is also correlation squared with SLR models, we could just 
as easily use the 2 'R s  from the two collinearity regression above to measure the extent to which 
the two variables, wk1 and wk2, moved together in a linear fashion.  Remember that 1 1ρ− ≤ ≤  
and 220 1xy Rρ≤ ≤= … so 2R  reflects the magnitude of the correlation, but not the sign. 

Note that the R-sq's in the two collinearity regressions above are the same, .873.  But this should 
be no surprise, since you know that 2R  is also correlation squared, and indeed, 2.9342 .873= . 

So for the case of just two RHS variables, we have two equivalent ways of measuring 
collinearity:   

• Correlation - 
1 2wk wkρ :  Use the simple correlation between the two RHS variables, or  

• Coefficient of Determination - 2R :  Use the 2R  from the collinearity regression (in which 
one of the RHS variables is regressed on the other). 

Both approaches will give you effectively the same metric.  But they differ in one very important 
respect:  By definition, the correlation concept can be applied only to pairs of explanatory 
variables.  In contrast, the 2R  from the collinearity regression approach can be easily extended 
to MLR models with more than just two RHS variables.   

And so that's what we do to measure multicollinearity.... we employ 2R  
from the collinearity regression.   

Measuring multicollinearity:  Use the 2R  from the collinearity 
regression. 
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… with Three or more RHS Variables:  R-squaredj  ( )2
jR  

Since the correlation concept applies only to pairs of variables, it will not be useful in assessing 
collinearity when we have three or more RHS variables.  But as just discussed, the R-squared 
metric easily extends to MLR models with additional RHS variables, and so we will use that 
metric to measure multicollinearity.   

An eample will show you how this is done. 

An Example:  Now consider a simple box office revenue forecasting MLR model in which total 
gross revenue, rtotgross, is regressed on weekly revenues in weeks #1, #2 and #3.  Here's a 
summary of the results from the full MLR model (Model (1)), and the three associated 
collinearity regressions (Models (2), (3) and (4)).  The column headers tell you the dependant 
variable in each model. 

 
-------------------------------------------------------------- 
            MLR Model            Collinearity Regressions__    
                 (1)          (2)          (3)          (4)    
           rtotgross          wk1          wk2          wk3    
-------------------------------------------------------------- 
wk1            0.540***                  0.261***    -0.115*** 
             (21.36)                  (111.42)     (-34.25)    
 
wk2            0.745***     2.361***                  0.792*** 
              (9.79)     (111.42)                  (131.20)    
 
wk3            4.778***    -1.146***     0.872***              
             (59.84)     (-34.25)     (131.20)                 
 
_cons         -0.601**      0.110       0.0817*       0.287*** 
             (-2.64)       (1.07)       (2.40)       (8.91)    
-------------------------------------------------------------- 
N               7730         7730         7730         7730    
R-sq           0.921        0.886        0.959        0.908    
-------------------------------------------------------------- 
t statistics in parentheses 
* p<0.05, ** p<0.01, *** p<0.001 
 

As suggested above, the R-sq's now differ across the three collinearity regressions:   

• wk2 is the most collinear explanatory variable since the 2R in Model (3) is .959 (which tells 
us that 95.9% of the variation in the wk2 variable can be explained by a linear function of the 
other two explanatory variables, wk1 and wk3), 

• wk3 in model (4) is less collinear, with 2 .908R = , and   

• wk1 is the least collinear of the explanatory variables in Model 
(1), with 2 .886R = . 

We call the R-sq's in the collinearity regressions the R-squared j 
measures of collinearity, 2

jR , where the j index tells you which 
RHS variable, xj, is the dependant variable in the collinearity 
regression. 
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• If 2
jR  is close to 1, then most of the variation in the RHS variable jx  can be explained by the 

other explanatory variables in the model.  And so in that sense jx  doesn’t bring much 
explanatory power that's new to the model (or offer much new independent explanatory 
power).  In this case we say that jx is highly collinear with the other RHS variables. 

• But if 2
jR  is small, then jx is not so collinear with the other explanatory variables, and in that 

sense it potentially brings a lot of new explanatory power to the RHS of the model.  In this 
case we say that jx is not so collinear with the other RHS variables. 

 
 
Variance Inflation Factors (VIFs):  Easily generate 2 'jR s   

Running all those collinearity regressions can be a nuisance.  Fortunately, regression packages 
are often able to generate Variance Inflation Factors (VIFs), which provide a quick and simple 
path to the 2 'jR s .  You may be wondering what any of this has to do with Variance Inflation.  
That will become quite clear when we later turn to MLR inference, and the variance of the 
parameter estimators. 

VIFs are defined by:  2

1
1j

j

VIF
R

=
−

 , so that 2 11j
j

R
VIF

= − . 

Accordingly, if you know the VIFs, it's easy to calculate the 2 'jR s ... and vice-versa.   

Example:  Here's an example using the previous MLR analysis: 
 
      Source |       SS           df       MS      Number of obs   =     7,730 
-------------+----------------------------------   F(3, 7726)      =  30052.55 
       Model |  27234043.1         3  9078014.37   Prob > F        =    0.0000 
    Residual |  2333803.56     7,726   302.07139   R-squared       =    0.9211 
-------------+----------------------------------   Adj R-squared   =    0.9210 
       Total |  29567846.7     7,729  3825.57209   Root MSE        =     17.38 
 
------------------------------------------------------------------------------ 
   rtotgross |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         wk1 |   .5403215   .0253012    21.36   0.000     .4907242    .5899187 
         wk2 |   .7447428   .0760905     9.79   0.000     .5955848    .8939008 
         wk3 |    4.77794   .0798398    59.84   0.000     4.621432    4.934447 
       _cons |  -.6009747   .2274986    -2.64   0.008    -1.046934   -.1550159 
------------------------------------------------------------------------------ 
 
. vif 
 
    Variable |       VIF       1/VIF  ||    Rsq j   
-------------+------------------------------------- 
         wk2 |     24.62    0.040613  ||  0.959387  
         wk3 |     10.88    0.091905  ||  0.908095  
         wk1 |      8.79    0.113804  ||  0.886196  
-------------+------------------------------------- 
    Mean VIF |     14.76 
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And to generate the 2 'jR s , we just exploit their relationship with the VIFs:  2 11j
j

R
VIF

= − , and so 

2
2 1 .0406 .9594R = − = , 2

3 1 .0919 .9081R = − =  and 2
1 1 .1138 .8862R = − = . 

These results agree with the earlier 2 'jR s results from the collinearity regressions. 

 
Endogeneity (Omitted Variable Bias/Impact) 

As discussed previously, estimated coefficients will be biased (or less pejoratively, impacted) to 
the extent that those variables are correlated with omitted variables, which are themselves 
correlated with the dependent variable. 

Misleading?  And as also discussed earlier, this is not so much a bias as a matter of 
interpretation.  The estimated coefficients reflect the average incremental relationship between 
changes in the particular RHS variable and changes in the LHS variable, controlling for all the 
other RHS variables in the model.  But of course, if a RHS variable is omitted/dropped/excluded 
from the model, it's not the same model… and so no one should be surprised to see changes in 
the OLS/MLR coefficient estimates for the surviving variables. 
 
Endogeneity Case I:  k=2 to k=1 

Starting with two RHS variables, and dropping one. 
Lets return to the box office revenue analysis in the previous section, and an initial MLR model 
in which rtotgross is regressed on weekly revenues wk1 and wk2.  As in the earlier section, we 
will focus on what happens to the estimated wk1 coefficient when wk2 is dropped from the 
analysis. 

You will see that the Omitted Variable Bias/Impact (OVB) on the estimated wk1 coefficent is the 
product of: 

1) Collinearity Regression (SLR):  the estimated wk1 coefficient in the collinearity 
regression of the omitted variable, wk2, on the surviving variable, wk1, and  

2) Full Model (MLR):  the estimated wk2 coefficient in the full model.   

And the sign of the OVB will accordingly depend on the signs of those two coefficients. 

1) Collinearity Regression (SLR):  Since the collinearity regression is a SLR model, the 
sign of the estimated slope coefficent in that model is the same as the sign of the 
correlation between wk1 and wk2 revenues. 

2) Full Model (MLR):  And we tend to believe that the signs of the coefficients in the full 
model reflect the correlations between those RHS variables and the dependent variable.  
As you'll see later, that is not quite correct.  But it's not a bad way to think about things... 
and close to accurate if the two RHS variables are fairly independent. 
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The OLS results: 

• Model (1) is the full model in which rtotgross has been regressed on wk1 and wk2.   

• Model (2) shows the results of the SLR model after wk2 was dropped/omitted from 
Model (1).  In going from Models (1) to (2), the estimated wk1 coefficient increases from 
-0.0120 to 2.354, an increase of 2.366.   

• And Model (3) presents the results of the collinearity regression in which wk2, the 
variable omitted/dropped in Model (2) is regressed on wk1, the surviving/remaining 
explanatory variable in Model (2). 

 
-------------------------------------------------------------- 
                Full Model    wk2 dropped     Collinearity Reg 
                      (1)             (2)             (3)    
                rtotgross       rtotgross             wk2    
-------------------------------------------------------------- 
wk1               -0.0120           2.354***        0.522*** 
                  (-0.46)        (176.20)        (249.91)    
 
wk2                 4.536***                                 
                  (95.87)                                    
 
_cons               0.401           4.433***        0.889*** 
                   (1.74)         (13.83)         (17.75)    
-------------------------------------------------------------- 
N                    9114            9114            9114    
R-sq                0.887           0.773           0.873    
-------------------------------------------------------------- 
t statistics in parentheses 
* p<0.05, ** p<0.01, *** p<0.001 

 

OVB impact on wk1 coefficient when wk2 dropped from the model: 

• The change in the wk1 coeff.:  2.354 ( 0.012) 2.366− − =   ... 

• The OVB calc:  {wk2 coeff in (1)} {wk1 coeff in (3)}  = 4.536 0.522 2.366⋅ =  

Notice that since both of the components in the calculation are positive, OVB is positive. 

The example above is contrived in the sense that we have wk2 data, and so there's really no need 
to drop it from the model.  Nonetheless, the example is illustrative, and usefully highlights the 
two factors that drive OVB: 

• wk1 coeff. in SLR Collinearity Model:  the estimated coefficient for the surviving 
variable (wk1) in the collinearity regression when the omitted variable (wk2) is regressed 
on the surviving variable (wk1), and 

• wk2 coeff. in the MLR Full Model:  the estimated coefficient for the omitted variable 
(wk2) when it’s in the full model (1) 
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More generally (dropping z):  Suppose that you start with a MLR model in which y is regressed 
on two RHS variables, x and z.  You are interested in estimating the change in the estimated x 
coefficient if z is dropped from the model. The following table summarizes the qualitative effects 
of omitted variable bias when you omit, say, z, from the model and just regress y on x.   

To fix notation, here are the SRFs for the full model and the collinearity regression model of 
interest (the SRF subscripts reference the dependent variable in each model): 

• Full Model - SRFy:  0
ˆ ˆ ˆˆ x zy x zβ β β= + +  

• Collinearity Regression - SRFz:  0ˆ ˆˆ xz xα α= +   (the omitted variable, z, is regressed on the 
surviving variable, x) 

 

Omitted Variable Bias (dropping z; impact on the x coeff.: ˆˆx zα β ) 

  ˆ
zβ  from the MLR Full Model (SRFy) 

ˆxα  from the SLR Collinearity 
Regression  (SRFz) 

 
ˆ 0zβ >  ˆ 0zβ =  ˆ 0zβ <  

ˆ 0xα >   positive 0 negative 

ˆ 0xα =   0 0 0 

ˆ 0xα <   negative 0 positive 

 

Signing the impact/bias:  This table is useful because often, and especially with favorite 
coefficient models, you want to be able to sign the bias if you have run out of fixes… so that 
even if you don’t know the actual magnitude, you can still say whether you have under- or over-
estimated the x parameter in the full model (as discussed earlier).   

And when thinking about the signs of these coefficients, we often look at correlations: 

• Since the collinearity regression is an SLR model, the sign of ˆxα  will reflect the sample 
correlation of x and z.  So in this case, that sign of the x-z correlation is informative. 

• While it's often the case that the sign of ˆ
zβ  will reflect the sample correlation of z with 

the dependent variable y, it turns out that that need not always be the case.  And so in this 
case, the correlation might not be as informative as we might like.  We will return to this 
issue later when we later introduce the concept of partial correlations. 
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But let's hope that you do not have to resort to the hypothetical exercise of signing the omitted 
variable impact/bias.  As mentioned earlier, there are more concrete ways of attacking the 
problem:   

• Don’t be lazy; find the data!... and if that doesn’t work… 

• Perhaps use a proxy variable for the omitted variable… and if that doesn’t work … and 
only as a last resort… 

• Turn to Instrumental Variables (IVs) (discussed later in the course). 

I can’t say it enough: After data integrity, endogeneity 
(omitted variable impact/bias) is the most important issue in 
doing econometrics.   What variables did you leave out of 
your analysis?  … and how are those omissions 
biasing/impacting your coefficient estimates?  Inquisitive 
minds want to know! 

 
Endogeneity Case II:  k>2 to k-1   What's the diff? 

Starting with more than two RHS variables, and dropping one explanatory variable.    
In looking at endogeneity so far, we’ve focused on going from two explanatory variables to one.  
How do things change if we have more RHS variables in the full model?  Not much!  Really! 
I will illustrate with an example, which starts with three RHS variables (x, z and w), and excludes 
w from the analysis, leaving the two surviving RHS variables x and z. 3  To assess the impact of 
OVB, you are focused on how the estimated x and z coefficients (for the surviving variables) are 
impacted by omitting w from the full model.  Unlike the previous OVB analysis, we now have 
omitted variable impacts on multiple surviving explanatory variables. 

As before, the impacts on those two coefficients (the omitted variable bias/impact) will be driven 
by coefficients in two models: 1) the Full Model , and 2) the Collinearity Regression. 

Full Model:  This model includes the third explanatory variable, w:   

• Full Model - SRFy:  0
ˆ ˆ ˆ ˆˆ x z wy x z wβ β β β= + + +    

Collinearity Regression:  As before, you also run the collinearity regression, regressing the 
omitted variable, w, on the two surviving/remaining variables in the model, x and z:  

• Collinearity Regression - SRFw: 0ˆ ˆ ˆˆ x zw x zα α α= + +  

Then the omitted variable biases/impacts from excluding w from the model are the same sorts of 
products of coefficients that you saw before: 

ˆˆx x wOVB α β=  (the product of the SRFw  x coeff and the SRFy w coeff) 

ˆˆz z wOVB α β=  (the product of the SRFw  z coeff and the SRFy w coeff) 

                                                 
3 The analysis with more than three RHS variables in the Full Model would be the same… so we'll stay with just 
three explanatory/RHS variables. 
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Comparing OVB magnitudes:  Since ˆ
wβ  (the w coefficient in the Full Model) is common to 

both calculations, differences in OVBs are driven entirely by the different coefficients in the 
Collinearity Regression.  And so for example, the variable with the largest (in magnitude) 
coefficient in the Collinearity Regression, will also be the variable experiencing the largest OVB 
impact. 

And so the methodology for computing the omitted variable impact is as before, except now 
there are two explanatory variables in the collinearity regression… and two impacts to be 
calculated. 

Example:  Here’s an example, returning to the movierevs dataset:  Model (1) is the Full Model; 
wk3 has been dropped for Model (2); Model (3) is the collinearity regression in which the 
omitted variable wk3 has been regressed on the two surviving variables, wk1 and wk2. 

 
------------------------------------------------------------ 
                Full Model    wk3 dropped     Collinearity Reg 
                      (1)             (2)             (3)    
                rtotgross       rtotgross             wk3    
------------------------------------------------------------ 
wk1                 0.540***     -0.00941          -0.115*** 
                  (21.36)         (-0.33)        (-34.25)    
 
wk2                 0.745***        4.528***        0.792*** 
                   (9.79)         (88.37)        (131.20)    
 
wk3                 4.778***                                 
                  (59.84)                                    
 
_cons              -0.601**         0.772**         0.287*** 
                  (-2.64)          (2.82)          (8.91)    
------------------------------------------------------------ 
N                    7730            7730            7730    
R-sq                0.921           0.884           0.908    
------------------------------------------------------------ 
t statistics in parentheses 
* p<0.05, ** p<0.01, *** p<0.001 

 

Notice that when wk3 was dropped from Model (1): 

• the estimated wk1 coefficient decreased by 0.549, from 0.540 to -0.00941, and  

• the estimated wk2 coefficient increased by 3.783, from 0.745 to 4.528. 

Applying the formulas above, we estimate the omitted variable biases using the product of the 
wk3 coefficient in Model (1), 4.778, and the respective RHS variable coefficients in the 
collinearity regression, Model (3): 

• wk1 OVB:  4.778 * (-0.115) = -.549, as advertised 

• wk2 OVB:  4.778 * (0.792) = 3.784, almost as advertised… blame rounding error 

Notice that as discussed above, since in both cases the collinearity coefficients are being 
multiplied by 4.778, the wk3 coefficient in Model (1), the magnitudes of the OVB's will be 
driven entirely by differences in the coefficients in Model (3).  And so by inspection, since the 
wk2 coefficient in Model (3), 0.79,  is about seven times the magnitude of the wk1 coefficient, 
0.11, you should expect that the OVB for wk2 will be about 7x the OVB magnitude for wk1, 
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which is the case.  So the collinearity regression coefficients alone provide you with a sense of 
the relative magnitudes of the OVB impacts when dropping wk3 from the model. 
 

Case III:  k>2 to k-? - Starting with more than two RHS variables, and dropping more than one. 
Unfortunately, the analysis of omitted variable impact gets much much more complicated when 
multiple explanatory variables have been omitted from the analysis.  That's a shame, of course, 
as the typical case with MLR models is that you have indeed omitted multiple explanatory 
factors… and it sure would be nice to know how that has impacted your estimated coefficients.   

So we have some intuition from the specific cases that we've analyzed…but have clearly fallen 
short of expectations! 

 
 
Interpreting Coefficients II:  What’s New? … and What's Left? 

Earlier you saw an SRF-based interpretation of estimated slope coeffcients in MLR models, in 
which estimated coefficients provide predicted average incremental effects, ceteris paribus.  And 
so, for example, if rtotgross has been regressed on wk1 and wk2 (weekly gross revenues), then 
the estimated wk1 coefficient captures the average effect on predicted total revenues associated 
with changes in wk1 revenues, holding wk2 revenues fixed. 

We now turn to a second very different interpretation of the 
estimated MLR coefficients, which will focus instead on What's 
New and What's Left: 

• What's New (independent contribution) about individual 
explanatory/RHS variables, given the other RHS variables in 
the analysis, and  

• What's Left (still to be explained) in the dependent/y variable, given that you've already 
included the other RHS variables in the analysis. 

To fix terms:  Consider a OLS/MLR model in which the dependent variable y has been 
regressed on a bunch of RHS variables 1 2 3, , ...x x x  and let 1̂β  be the estimated 1x  coefficient in 

the MLR model.  Our goal is to better understand 1̂β  as capturing the relationship between 
What's New about 1x  and y, or perhaps instead, What's Left with y.  There will be two approaches 
here, each of which requires that we first determine What's New about 1x . 

What's New about 1x : 

1. Run the collinearity regression for RHS variable 1x ... so regress 1x  on the other RHS 
variables. 

2. Capture the residuals from the collinearity regression.   

The predicteds from the collinearity regression generate the part of 1x  explained by the 
other RHS variables.  And so the residuals capture the part of 1x  unexplained by the 
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other RHS variables.  In a sense, those residuals capture the part of 1x  that is new to the 
RHS of the model (given the other RHS variables in the analysis).   

We say that those residuals are WhatsNew about 1x , given the other RHS variables in the 
model. 

 

Interpretation II.a:  Correlation between y and What's New about 1x  

1̂β  reflects the correlation between the dependent variable y and What's New about the RHS 
variable 1x .  If you run a SLR model regressing y on WhatsNew about 1x , you'll discover that the 

estimated slope coefficent in that SLR model is the same as 1̂β , the MLR coefficient! 

And since SLR coefficients essentially reflect correlations (subject to a standard deviations 
adjustment), it's useful to interpret MLR coefficients as capturing the correlation between the 
dependent variable, y, and WhatsNew about an explanatory variable.  Or to be more precise, the 
sign of the estimated MLR coefficient will agree with the sign of the correlation between the 
dependent variable and WhatsNew about that variable. 

 

Example:  Here's an example... working with rtotgross and wk1 and wk2 revenues (we'll focus 
on the wk2 coefficient). 
1. Run the baseline MLR Model (1):  reg rtotgross wk1 wk2 

2. Run the Collinearity regression, Model (2):  reg wk2 wk1 

3. Create whatsnew2 by capturing the residuals:  predict whatsnew2, resid 

4. Run the (equivalent) SLR model, Model (3):  reg rtotgross whatsnew2 

 
------------------------------------------------------------ 
                      (1)             (2)             (3)    
                rtotgross             wk2       rtotgross    
------------------------------------------------------------ 
wk1               -0.0120           0.522***                 
                  (-0.46)        (249.91)                    
 
wk2                 4.536***                                 
                  (95.87)                                    
 
whatsnew2                                           4.536*** 
                                                  (34.23)    
 
_cons               0.401           0.889***        28.64*** 
                   (1.74)         (17.75)         (50.05)    
------------------------------------------------------------ 
N                    9114            9114            9114    
R-sq                0.887           0.873           0.114    
rss (SSR)     3,466,910.0       169,974.8    27,194,258.1    
rmse (RMSE)         19.51           4.319           54.63    
------------------------------------------------------------ 
t statistics in parentheses 
* p<0.05, ** p<0.01, *** p<0.001 
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As predicted, the estimated MLR Model (1) wk2 coefficient is the same as the SLR Model (3) 
slope coefficient.   

Accordingly, every estimated MLR coefficient can be computed using a SLR model in which the 
dependent variable is regressed on What's New about each particular explanatory variable. And 
so the signs of the estimated MLR coefficients will agree with the signs of the correlations of the 
dependent variable with What’sNew about each of the RHS variables. 

Note that in the previous example, while the wk2 coefficients in the Models (1) and (3) agree, the 
other reported regression statistics/figures (R-sqs, SSRs, RMSEs, t stats, etc.) are wildly 
different.  So those two models are not at all comparable, even though they do agree on the 
estimated coefficients of interest.  The second interpretation of 1̂β   involving What's New about 

1x will instead feature models with quite similar results, across the board. 
 

Interpretation II.b:  Correlation between What's Left of y and What's New about 1x  

1̂β  also reflects the correlation between What's Left of the dependent variable y and What's New 
about the RHS variable 1x .   

As just suggested above, If we bring WhatsLeft into the analysis, we'll have a SLR model that 
much more closely resembles the original MLR model, slope coefficients and all.  Let's do that! 

 
… and WhatsLeft 
The WhatsLeft − WhatsNew interpretation (II.b) continues the previous build: 

1. Return to the prevous OLS/MLR model in which the dependent variable y has been 
regressed on a bunch of RHS variables 1 2 3, , ...x x x  and as before, let 1̂β  be the estimated 

1x  coefficient in the MLR model.  As above, generate WhatsNew about 1x  by regressing 

1x  on the other RHS variables and capturing the residuals. 

2. To generate WhatsLeft about y, regress y on the other 
RHS variables (on the RHS variables other than 1x ). 

3. Capture the residuals from this regression.   

The predicteds from the regression generate the part of y  explained by the other RHS 
variables... and so the residuals capture the part of y  unexplained by the other RHS 
variables.  We'll call that unexplained part WhatsLeft (about y). 

4. Run a SLR model regressing WhatsLeft (about y) on WhatsNew (about 1x ).   

As before, the estimated coefficent in that SLR model will be equal to 1̂β , the MLR 
coefficient!  But in contrast to the prevous SLR model, the performance metrics for the 
new model will look a lot like those in the MLR model.  In many cases, they won't be 
precisely the same figures (usually due to small differences in degrees of freedom 
(dofs))...  but they will be very very close. 
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To illustrate, let's continue working with the rtotgross, wk1 and wk2 box office revenues MLR 
model:  Generate WhatsNew as before.   

And to generate WhatsLeft: 
 

5. Regress rtotgross on wk1:  reg rtotgross wk1 

6. Create whatsleft1 by capturing the residuals:  predict whatsleft1, resid 

7. Run the (equivalent) SLR model:  reg whatsleft1 whatsnew2 

If you compare the estimated MLR and SLR slope coefficients, you'll find that they agree!  And 
if you also compare the MLR and SLR SSRs, MSEs, R-sg's, t stats etc… you'll discover that they 
pretty much agree, except for SSTs and R-sq's.   

The following example illustrates: 

 
Example:  Here are the results from the original model and the regression of WhatsLeft on 
WhatsNew: 
 
Model (1):  reg rtotgross wk1 wk2 
 
      Source |       SS           df       MS      Number of obs   =     9,114 
-------------+----------------------------------   F(2, 9111)      =  35773.10 
       Model |  27224699.6         2  13612349.8   Prob > F        =    0.0000 
    Residual |   3,466,910     9,111  380.519153   R-squared       =    0.8870 
-------------+----------------------------------   Adj R-squared   =    0.8870 
       Total |  30691609.6     9,113  3367.89308   Root MSE        =    19.507 
 
------------------------------------------------------------------------------ 
   rtotgross |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         wk1 |  -.0120343   .0264237    -0.46   0.649    -.0638307     .039762 
         wk2 |   4.536046   .0473147    95.87   0.000     4.443298    4.628793 
       _cons |   .4006355   .2300356     1.74   0.082     -.050286    .8515569 
------------------------------------------------------------------------------ 
 
Model (2):  reg whatsleft1 whatsnew2 
 
      Source |       SS           df       MS      Number of obs   =     9,114 
-------------+----------------------------------   F(1, 9112)      =   9192.01 
       Model |  3497351.55         1  3497351.55   Prob > F        =    0.0000 
    Residual |   3,466,910     9,112  380.477398   R-squared       =    0.5022 
-------------+----------------------------------   Adj R-squared   =    0.5021 
       Total |   6964261.6     9,113  764.211741   Root MSE        =    19.506 
 
------------------------------------------------------------------------------ 
  whatsleft1 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
   whatsnew2 |   4.536046   .0473121    95.87   0.000     4.443303    4.628788 
       _cons |   1.23e-09   .2043195     0.00   1.000    -.4005122    .4005122 
------------------------------------------------------------------------------ 
 

Some comments: 
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• As promised, the wk2 slope coefficients are the same in the previous two models, as are the 
SSRs.  And so subject to an adjustment for the standard deviations, the MLR slope 
coefficients for any RHS variable reflect the correlations between WhatsNew about that 
variable and WhatsLeft in the y variable (given the rest of the model). 

• The dofs are slightly different (9,111 v. 9,112), reflecting the difference between the MLR 
and SLR models.   And the MSEs (RMSEs) are very very close, but slightly different because 
the dofs are slightly different. 

• We won’t get to them for a bit (when we discuss statistical inference), but notice that the 
other reported wk2 figures (Std. Err., t stat, P>|t| and [95% Conf. Interval]) are also virtually 
identical in the two models… but again, they are not exactly the same due to the different 
dofs in the two models. 

• The R-sq's are quite different… but only because the SSTs are so different (not surprising 
given that WhatsLeft captures the variation in rtotgross not explained by wk1). 

 
 
Important Take Away:   

Earlier, in the initial discussion of endogeneity, I said: 

...we tend to believe that the signs of the coefficients in the full [MLR] model reflect the 
correlations between those RHS variables and the dependent variable.  As you'll see 
later, that is not quite correct.  But it's not a bad way to think about things... and close to 
accurate if the two RHS variables are fairly independent. 

And now you see why! 
 

Coefficients in MLR models do not necessarily reflect simple pairwise correlations between the 
dependent variable and the RHS variables.  But they do reflect:  

• correlations between the dependent variable and What's New about RHS variables, as 
well as  

• correlations between What's Left of the dependent variable and What's New about RHS 
variables.  (You will learn later that these are called partial correlations.) 
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And just to drive the point home....   
Here are two examples, in which the signs of the simple pairwise correlations do not agree with 
the signs of the respective coefficients in the MLR models. 
 

   
Note that the signs of the slope coefficients in the SLR models will agree with the signs of the 
pairwise correlations.  Blame multicollinearity! 

 

• Box Office Revenues:  wk1 and wk2 
wk1 revenues are positively correlated with total box office revenues but wk1 has a negative 
coefficient in the MLR model that includes wk2 (left). 

• Bodyfat:  wgt and abd 
wgt is positively correlated with the Brozek measure of bodyfat ( so wgt has a positive slope 
coeffcient in the SLR model), but wgt has a negative coeffcient in the MLR model that 
includes abd (waist size) (right). 

 

So while the signs of correlations between RHS variables and the dependent variable often agree 
with coefficient signs in MLR models, that is certainly not guaranteed.  All of this, of course, 
makes signing omitted variable bias all the more challenging.  Figuring out the signs of partial 
correlations is hard work!   ... and never ever fall into the trap of just thinking about pairwise 
correlations (unless, of course, your RHS variables are all indepoendent of one another). 

 

We'll return to this topic. 


